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Abstract

An analysis of cloud overlap based on high temporal and vertical resolution retrievals
of cloud condensate from a suite of ground instruments is performed at a mid-latitude
observational facility. Two facets of overlap are investigated: cloud fraction overlap,
expressed in terms of a parameter “alpha” indicating the relative contributions of max-5

imum and random overlap, and overlap of horizontal distributions of condendsate, ex-
pressed in terms of the correlation coefficient of condensate ranks. The degree of
proximity to the random and maximum overlap assumptions is also expressed in terms
of a decorrelation length, a convenient scalar parameter that emerges under the as-
sumption that overlap parameters decay exponentially with separation distance. Both10

cloud fraction overlap and condensate overlap show significant seasonal variations
with a clear tendency for overlap to be closer to maximum for summer months. A ten-
dency for more maximum overlap is also observed as the size of the domain used to
define cloud fractions increases. These dependencies are significantly weaker for rank
correlations. Hitherto unexplored overlap parameter dependencies are investigated by15

analyzing mean parameter value differences at fixed separation distance within differ-
ent layers of the atmospheric column, and by searching for possible systematic rela-
tionships between alpha and rank correlation. We find that for the same separation
distance the overlap parameters are significantly distinct in different atmospheric lay-
ers, and that a tendency exists for random cloud fraction overlap to be generally in sync20

with more random overlap of condensate ranks.

1 Introduction

While conspicuous, cloud heterogeneity is generally ignored in atmospheric research
applications. The underlying reasons for doing so include computational expediency,
inability to diagnose or predict the heterogeneity, and insufficient understanding of how25

to meaningfully convey its impact on various atmospheric processes. For example,
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while radiative transfer can in principle be accurately performed on a fully described
3-D cloud field, this capability cannot be trivially extended to Global Climate Models
(GCMs). Obstacles like the unavailability of such finite edge 3-D cloud fields, the lack
of knowledge on how to make the resulting 3-D radiation fields relevant for other model
processes, and computational costs are not easy to overcome. Nevertheless, while5

recreating full-blown 3-D cloud heterogeneity appears to be presently out of reach in
GCMs, the representation of in-cloud horizontal and vertical variability of condensate in
otherwise plane-parallel clouds, seems like a tenable goal with present modeling and
observational capabilities.

Recently, the coupling of cloud generators producing horizontal and vertical cloud10

variability with standard GCM radiative transfer algorithms operating stochastically (to
maintain acceptable computational cost) has been suggested as a way to bypass direct
incorporation of complex cloud structure in radiation schemes (Pincus et al., 2003).
Cloud generators can also be used for pairing GCM cloud fields with simulators of
instruments of much higher spatial resolution than the model grid size. But for cloud15

generators to produce realistic one-point statistics of cloud condensate, and therefore
radiation fields, both the horizontal variability and vertical correlations of cloud fraction
and condensate distributions need to be realistically described.

In this paper we provide a detailed examination of cloud vertical variability as inferred
by a dataset of 2-D distributions of condensate derived from a suite of surface-based20

instruments. Our immediate goal is to understand the features, dependencies, and
intrinsic connections between two aspects of cloud vertical variability, cloud fraction
overlap and overlap of the horizontal distributions of cloud condensate. The ultimate
objective, once studies such as this are carried out for a more extensive range of cloud
regimes, is to determine a simple but robust set of global rules that can be used to gen-25

erate modeled clouds that resemble (in terms of one-point statistics) the original cloud
fields and produce similar radiative fluxes and heating rates. While measurements
similar to those used here have been previously analyzed in studies of cloud fraction
overlap (from ground or space), condensate distribution overlap and its relationship
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with cloud fraction overlap has not been studied before with an observationally-based
dataset.

2 Dataset, definitions, and overlap metrics

Our overlap analysis relies solely on the continuous baseline microphysical retrieval MI-
CROBASE evaluation product (Miller et al., 2003) of the Atmospheric Radiation Mea-5

surement (ARM) Climate Research Facility (ACRF), now part of the US Department
of Energy Atmospheric System Research (ASR) Program. The MICROBASE retrieval
algorithm uses a combination of observations from a millimeter cloud radar (MMCR),
a ceilometer, a micropulse lidar (MPL), a microwave radiometer (MWR), and balloon-
borne soundings to determine the profiles of liquid/ice water content (LWC/IWC), liq-10

uid/ice cloud particle effective radius, and cloud fraction. For liquid cloud layers (atmo-
spheric temperatures greater than 273 K) MICROBASE uses the radar reflectivity-LWC
relationship derived by Liao and Sassen (1994). The LWC profile is vertically integrated
to provide a liquid water path (LWP) which is then linearly scaled to match the LWP ob-
served by the MWR. For atmospheric temperatures below 257 K all water is assumed15

to be in the ice phase, and its content is determined using the radar reflectivity-IWC
relationship of Liu and Illingworth (2000). Between 257 and 273 K water is assumed
to exist in both phases and a linear temperature-dependent partition of ice/liquid is
applied. The radar reflectivities used in the above relationships come from the Active
Remote Sensing of Clouds (ARSCL) product (Clothiaux et al., 2000). While particle20

size retrievals are also performed as part of the MICROBASE algorithm, they are not
used in the present study. Cells that are flagged to have no reflectivity data are dis-
carded and not used in the analysis.

The MICROBASE data of this study are for the Southern Great Plains (SGP) ACRF
site in Oklahoma, USA (http://www.arm.gov/sites/sgp). The dataset spans seven years25

(2000–2006) and data availability, although not uniform, covers all 84 months. The 2-
D condensate distribution is available at a 10 s resolution along the advection path

600

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/597/2011/acpd-11-597-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/597/2011/acpd-11-597-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.arm.gov/sites/sgp


ACPD
11, 597–625, 2011

An analysis of cloud
overlap

L. Oreopoulos and
P. M. Norris

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of the clouds over the instruments, and 45 m vertical resolution (constrained by the
MMCR range gate). For the purposes of this study, the condensate profiles for each
day are divided into segments that roughly correspond to scales of typical GCMs. For
example, when six segments are used per day, each segment consists in general of
1440 condensate profiles, which correspond to scales of ∼150 km assuming typical5

wind speeds of 10 m/s. These 1440-profile segments are our default choice for the
overlap analysis, with 720- and 2880-profile segments used only when we want to
highlight the sensitivity of an overlap metric to the pseudo-spatial reference scale.

Our analysis does not distinguish between the liquid and ice phases, but rather op-
erates on the total water content, i.e., the sum of LWC and IWC. For our cloud fraction10

overlap analysis we calculate the true combined segment cloud fraction Ct(z1,z2) of a
pair of layers separated by distance ∆z=z2−z1 – where z2 and z1 are the heights of
the layer centers as determined by the vertical resolution of the dataset, so that ∆z is
always a multiple of 45 m – by counting the number of profiles which have non-zero
total water content at either or both of the two height levels of interest and dividing15

by the total number of profiles with valid cells at both heights. Individual layer cloud
fractions C(z1) and C(z2) are calculated by dividing the number of cloudy (total wa-
ter content greater than zero) cells in each layer by the same number of valid profiles
as in the calculation of Ct(z1,z2). From the individual layer cloud fractions, combined
cloud fractions corresponding to the maximum and random overlap assumption can be20

calculated as follows:

Cmax(z1,z2)=max(C(z1),C(z2)) (1a)

Cran(z1,z2)=1− (1−C(z1))(1−C(z2)) (1b)

Hogan and Illingworth (2000) proposed that the combined cloud fraction of two layers
can be approximated as a weighted average of Cmax(z1,z2) and Cran(z1,z2) according25

to:

C(z1,z2)=α(z1,z2)Cmax(z1,z2)+ (1−α(z1,z2))Cran(z1,z2) (2)
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When Ct(z1,z2) is known, as in our case, it can be substituted in the left hand side of
the above equation which can then be solved for the weighting parameter α(z1,z2), a
measure of the proximity of overlap to maximum (exact when α(z1,z2)=1) or random
(exact when α(z1,z2)=0). Negative values suggest some degree of minimum overlap (a
combined cloud fraction greater than that of random overlap). Without distinguishing5

between contiguous and non-contiguous cloud layers, we calculate α(z1,z2) for our
entire dataset for each possible cloud fraction pair for separation distances ranging
from 45 to 12 015 m (1 to 267 layer separations) as long as as neither of the cloud
fractions is zero or one. This procedure results in a very large dataset of α(z1,z2)
values which we segregate by month. The number of valid α(z1,z2) values within a10

month over 7 years can exceed 7 million for 150 km segments. In the following we
frequently refer to this parameter simply as “alpha”.

In a similar fashion, we calculate rank correlations of total water content as a function
of separation distance (see also Pincus et al., 2005). For layers at heights z1 and
z2, the overlapping cloudy cells are identified (i.e., non-zero total water contents in15

both layers), and their water contents are ranked at each height. A linear correlation
coefficient r(z1,z2) is then calculated from the ranks Ri (z1) and Ri (z2) according to:

r(z1,z2)=

Ncld∑
i=1

(
Ri (z1)−R(z1)

)(
Ri (z2)−R(z2)

)
√

Ncld∑
i=1

(
Ri (z1)−R(z1)

)2
√

Ncld∑
i=1

(
Ri (z2)−R(z2)

)2

(3)

where Ncld is the number of overlapping cells and R(z1), R(z2) are the mean ranks of
the water contents in the two layers. Unlike α(z1,z2) calculations, overcast layers are20

not excluded. It should also be pointed out that since the overlapping portion changes
continuously with the pairing partner, the part of a specific layer being ranked is in
general different for each rank correlation calculation. In other words, ranks are calcu-
lated anew as dictated by the common portion of the two layers. The rank correlation
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coefficient expresses the likelihood that water contents of the same relative strength
within their respective layers are aligned in the vertical, with r(z1,z2)=1 corresponding
to perfect alignment and r(z1,z2)=0 corresponding to perfectly random alignment. The
manner in which water contents align in the vertical is important for processes like radi-
ation. For example, the domain-averaged fluxes differ between a case where all high or5

low condensate values are aligned to create pockets of vertically integrated high or low
liquid water paths and a case where a more random alignment homogeneizes the hor-
izontal distribution of LWP (e.g., see Norris et al., 2008). The full dataset of all possible
r(z1,z2) values is derived from MICROBASE condensate for the period 2000–2006 in
a manner similar to alpha, described above, including segregation by month.10

It has been suggested (e.g., Hogan and Illingworth, 2000; Pincus et al., 2005; Shonk
et al., 2010) that profiles of alpha and rank correlation can be modeled as inverse
exponential functions

α(h,∆z)=exp

(
− ∆z

Lα(h)

)
(4a)

r(h,∆z)=exp

(
− ∆z

Lr(h)

)
(4b)15

where Lα and Lr are decorrelation length scales which can be viewed as alternate
measures of the degree of overlap. Specifically, large values of Lα indicate proximity
to maximum overlap, while small values proximity to random overlap. Likewise, large
values of Lr indicate condensate values that are highly correlated in terms of relative
strength while small values suggest condensate values whose relative strength exhibits20

weak correlation between layers. In Eq. (4) the overlap parameters and decorrelation
lengths depend on the mean height h of the atmospheric layer where they are calcu-
lated. This is intended to convey the notion that identical separation distances may
systematically give rise to diverse overlap behavior in different vertical segments of
the atmosphere with distinct cloud formation processes and dynamical characteristics.25
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One of the drawbacks of inverse exponential modeling is that negative values of the
overlap parameters cannot be captured (Norris et al., 2008). This turns out to be a
poorer approximation for the condensate rank correlation, for which negative values
are encountered much more frequently than alpha. In the analysis that follows, overlap
is discussed both in terms of the overlap parameters alpha and rank correlation and in5

terms of their respective decorrelation lengths. The latter tend to be more convenient
because they provide a simple scalar representation of overlap, while alpha and rank
correlation are arrays that encompass the potentially complex full dependence on layer
height pairs (z1,z2).

3 Overlap characteristics at the SGP ACRF site10

3.1 Seasonal cycle of overlap parameters and their decorrelation lengths

To derive the monthly profiles of α(∆z) and r(∆z) we ensemble-average for each month
all values of α(z1,z2) and r(z1,z2) that have the same separation distance ∆z. The
number of values that enter this ensemble average decreases monotonically with sep-
aration distance. For the time being, we do not distinguish between ∆z’s at different15

levels of the atmosphere, although we will examine this dependence later. The monthly
values can be further averaged to seasonal averages for winter (DJF), spring (MAM),
summer (JJA) and fall (SON). Figure 1 shows seasonal averages of alpha and Fig. 2
shows seasonal averages of rank correlation; the profiles of standard deviation for both
quantities are also provided in separate plots. The figures show both the seasonal20

dependence for a given segment size (150 km) and the dependence on segment size
for a given season (JJA was chosen – the dependence is similar for other seasons).
As explained above, the three segments sizes, 75, 150, 300 km, should not be taken
literally as actual segment spatial scales, but to be roughly corresponding to a fixed
number of 720, 1440, and 2880 condensate profiles.25
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In the analysis that follows, we will focus mainly on a description of the characteris-
tics of overlap as extracted from the dataset and will not consistently attempt to provide
an interpretation of the underlying reasons behind the overlap features that emerge.
Such interpretations are often not obvious and would require extensive additional me-
teorological data not provided by the MICROBASE dataset. A comparison of Figs. 15

and 2 indicates that alpha profiles vary more with season and domain size than rank
correlation profiles. They also drop much more slowly with distance compared to rank
correlations. The decrease of alpha with separation distance is faster for winter, fol-
lowed by fall, spring and summer. In other words, cloud fraction overlap is most random
in the winter and least random (most maximum) during the summer. Since convective10

activity is greatest during the summer while winter cloudiness is dominated by frontal
systems, the conclusion is that convective clouds are more maximally overlapped than
frontal clouds. This was also found by Mace and Benson-Troth (2002) and Naud et al.
(2008). The first of these papers actually showed the seasonal cycle of alpha at se-
lect separation distances over the same observation site and from a data set derived15

indepedently from the same suite of instruments used in MICROBASE, but of coarser
temporal and vertical resolution.

Our results also indicate that the variability (standard deviation) of alpha profiles fol-
lows in general the order of degree of random overlap: the alpha profile with the small-
est values (DJF) is also the most variable; during summer the alpha values are larger20

(more maximally overlapped) and the distribution of alpha values is more narrow. This
seems reasonable – if random overlap is produced by independent clouds layers at
various heights, then we expect to get many cases of chance alignments between lay-
ers on a per segment basis, thereby injecting a random element of “maximum overlap”
and increasing the variance of alpha. In contrast, maximum overlap cases produced by25

convective systems with strong vertical coherence are not expected to produce random
overlap by chance, unless there is a strong vertical wind shear.

The choice of domain size affects the alpha profiles significantly. Cloud fraction over-
lap is more maximum for the largest domain size (300 km). This has been previously
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noted by Hogan and Illingworth (2000) and Oreopoulos and Khairoutdinov (2003) and
is the natural outcome of the dominant scales of cloud formation as determined by
the underlying dynamical and thermodynamical processes. Indeed, for isolated cloud
systems the chance of finding large total cloud fractions decreases as the domain size
increases, and since random overlap is associated with larger cloud fractions than5

maximum overlap for the same cloud fraction profile, the overlap will tend to be more
random within a smaller domain. Another thought experiment that leads to the same
conclusion – that the overlap is more maximum for a larger domain – is to consider a
particular cloud fraction profile within a certain domain. By enlarging the domain with-
out changing the cloud whose spatial extent was determined by the dominant scales10

of the underlying dynamics and thermodynamics, both the layer cloud fraction and the
total cloud fraction decrease (layer clear fractions and total clear fraction increase).
The cloud system occupies a relatively smaller portion of the bigger domain and cloud
layers appear more aligned (more maximaly overlapped) in the vertical since the com-
bined clear fraction of any two layers has increased.15

This type of argument does not carry over trivially to rank correlations which seem
to also show the same dependence, albeit weaker, on domain size. At larger domain
sizes the probability density function of condensate must in general become wider and
the relative ordering of condensate values must change so that the values of particular
portions of the domain with more similar clouds are closer in relative strength com-20

pared to the case where the domain is smaller and the inter-layer variability in those
portions appears larger. In other words, by extending the domain and widening the
distribution with the addition of different clouds, the values of condensate at close hor-
izontal positions appear more similar in a relative sense than in the initial (narrower)
distributions.25

The seasonal ordering in terms of the magnitude of rank correlation profiles is the
same as for alpha profiles for separation distances up to ∼4 km where positive values
occur. Rank correlations are generally smaller for DJF and progressively increase for
MAM and JJA before dropping again for SON. This is consistent with stronger vertical
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motions during the summer producing more aligned columns of cloud condensate.
However, the picture reverses for the negative rank correlations of larger separation
distances which are greater in absolute value for JJA and smaller (closer to zero) for
DJF. Apparently the low and high clouds of summer multi-layer cloud systems are more
anticorrelated than in the winter. Since the negative values of alpha do not exhibit such5

reversal, i.e., DJF cloud fractions are more minimally overlapped than JJA, the con-
clusion is that for the smaller overlapped portion of DJF clouds the anticorrelations of
relative condensate strengths are somewhat weaker. As we will see in the next section,
however, when all separation distances and seasons are ensemble-averaged there is
a clear tendency for smaller alphas to be correlated with smaller rank correlations. This10

is not surprising since this is the tendency that Figs. 1 and 2 imply at smaller separa-
tions, which are derived from a much larger number of data points. It should also be
kept in mind that the dataset used for Figs. 1 and 2 is not identical since overcast layers
are excluded from the calculation of alpha but not of rank correlation.

Another difference in the behavior of rank correlations is that the variability of rank15

correlations is smallest in DJF and greatest in JJA, i.e., the opposite of what takes place
for alphas. This is somewhat expected given that the mean profile of rank correlation,
itself coming from a wide distribution of segment-length rank correlations, is more ex-
treme in an absolute sense for JJA (more positive at smaller separations, more negative
at larger seperations) than DJF. The variability stabilizes to near-constant values at or20

above smaller separation distances, ∼2 km or below depending on the season, com-
pared to alpha variability which becomes more stable (apart from the superimposed
noise of the smaller sample size) only at separation distances above ∼3 km. In con-
clusion, for both alpha and rank correlations, the variability increases rapidly up to a
certain separation distance and then changes more slowly. Also, the standard devia-25

tion that the parameters settle to is much larger (0.8–1) for alpha, compared with the
rank correlation (0.35–4).

The ensemble-averaged alpha and rank correlation profiles of individual months (not
shown) can be fit to inverse exponentials via least squares, following chapter 15.2 of
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Press et al. (1992), in order to infer the decorrelation lengths of Eq. (4). The fitting
gives greater weight to smaller separation distances which are more numerous. The
results for the different segment lengths are given in Fig. 3, as a function of the month
of the year. The figure reflects some of the seasonal and spatial scale dependencies
discussed previously, for example decorrelation lengths that peak during the summer5

months when vertical stability is expected to be weaker, and stronger vertical motions
favor the formation of cloud systems where cloud fractions and condensates align bet-
ter. Alpha decorrelation lengths are larger than their rank correlation counterparts, with
a stronger seasonal cycle and more pronounced dependence on domain size, echoing
the contrasts we highlighted in our discussion of Figs. 1 and 2.10

We also calculated, but do not show here, the median values of the decorrelation
length derived for each segment and each month, as in Barker (2008b). The profiles of
the overlap parameters for each individual segment are much more noisy and the fits
much less reliable. Decorrelation lengths of alpha for individual segments can be very
large, as also noted by Barker (2008a) (they exceed 10 km 36.5% of the time), making15

the mean values of limited use, and skewing the medians to values much higher (about
double) than those calculated from ensemble-averaged overlap parameter profiles. For
the rank correlation decorrelation lengths of individual segments, however, large mag-
nitudes are much rarer (they exceed 10 km only for ∼1% of the cases) and the range of
values is much narrower. The histograms of the two decorrelation length distributions20

for all 150 km segments of all months, but without the values greater than 10 km, are
compared in Fig. 4. The Lα histogram is much wider, has no well-defined peak and
looks quite different from the Lr histogram which peaks at the 0.2–0.4 km bin. Despite
the fact that the mode of the latter histogram is very small, the mean derived from the
histogram, 1.74 km, is larger than any of the values shown in Fig. 3, which serves as25

a reminder that the mean of decorrelation lengths derived from individual segments
is a fundamentally distinct quantity from the decorrelation length derived from a mean
profile of rank correlations. This is even more true for alpha decorrelation length which
has an even wider distribution in Fig. 4.
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3.2 Dependence of overlap parameters on vertical location

In our earlier discussion of Eq. (4) we mentioned that identical separation distances
may give rise to systematically different overlap parameter values in different vertical
segments of the atmosphere due to distinct cloud formation processes and associ-
ated dynamical circulations. In this subsection we examine whether this can indeed5

be shown with the available data set. Figure 5 shows ensemble-averaged alphas and
rank correlations at separation distances of 1 and 2 km aggregated separately for four
different atmospheric layers. The error in the mean is too small to be discernible in
these plots and is not shown, but ensures that any differences among the means is al-
ways much larger than the standard errors. For alpha, there is a general trend of more10

random overlap for the same separation distance the higher the atmospheric layer in
which the calculation performed. This is always true for the 2 km separation distance,
but does not hold true for the 1 km separation distance as one moves from the 0–3 km
layer to the 3–6 km layer. The rank correlation behavior, on the other hand, is some-
what less simple. The 0–3 km layer has the largest values at both separation distances,15

while the smallest are encountered in the 3–6 km layer for the 2 km separation distance
and the 9–12 km layer for the 1 km separation distance. The large decrease of the
rank correlation from the 0–3 km to the 3–6 km layer can probably be traced back to
the cloud phase transition likely to occur within the latter layer and the transition from
the dynamic and thermodynamic states of the planetary boundary layer, which tends20

to be more well-mixed, to those of the free troposphere, which tends to be more dom-
inated by stability. The probability of these transitions actually occurring is greater for
2 km separation distances, which may be the reason for the observed minimum in rank
correlation. Hogan and Illingworth (2003) examined the linear correlations of ice water
content for overcast clouds above and below 6.9 km. They found greater correlations25

in the upper layer, a result qualitatively similar to our increase of rank correlation from
the 3–6 km layer to the 6–9 km layer, which they attributed to the reduced wind shear
of the upper layer. The datasets and methodology are different enough to prevent us
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from drawing definitive conclusions about the apparent consistency of the two findings,
but the qualitative agreement is worth mentioning nonetheless. Naud et al. (2008) also
studied the role of wind shear on cloud overlap but for cloud fraction only, i.e., the effect
on alphas, not rank correlations. They found higher wind shear correlating with smaller
alphas above ∼2 km separation distances. If shear was the sole dynamical factor reg-5

ulating cloud overlap then our results would seem to imply that shear must increase
with height since according to Fig. 5 cloud fraction overlap tends to be generally more
random in the upper troposphere compared to the lower troposphere. In our case, such
an interpretation can not be provided with certainty based on the information available
here.10

3.3 Relationship between overlap parameters

If the overlap parameters alpha and rank correlation are to be used to generate
columns of condensate that follow the overlap behavior seen in observations, it may
not be wise to choose values for these parameters that are independent of each other.
In a modeling application, the most convenient approach would be to deal with scalar15

quantities such as decorrelation lengths and therefore stay within the framework of ex-
ponentially decaying alphas and rank correlations while accepting the shortcoming of
positive-only values. A plot like Fig. 3 can be employed to pick Lα and Lr values that
can then be used at all times for each month at the appropriate latitudes and domain
sizes. This plot implies that the ratio of Lα to Lr changes substantially from month to20

month (from a minimum of ∼2 in February to a maximum of ∼2.8 in July and Septem-
ber). The wisdom of picking a single value of Lα and (independently or not) of Lr and
applying it universally for a particular month will probably depend on the application and
should be the subject of further investigation, as will be discussed in the next section.

If one wants to explore relationships between the two types of overlap, it may25

not however be appropriate to compare only quantities derived after a large amount
of ensemble averaging has been performed, which was the approach we adopted
for obtaining meaningful values of decorrelation lengths. We will therefore return to
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segment-level alphas and rank correlations for our investigation of the relationship
between cloud fraction and condensate distribution overlap. We will also investigate
whether rank correlations depend on the combined cloud fraction of two layers. The
latter is not independent of alpha since for a given pair of cloud fractions, a smaller
alpha implies a larger combined cloud fraction. So, while we may get a somewhat5

different perspective by looking at how ranks change with different combined cloud
fractions, that perspective cannot be inconsistent from the one obtained by looking at
rank correlation vs. alpha relationships.

In order to examine these relationships both overlap parameters need to be derived
from the same data set. Since alpha is meaningless when one of the two layers is over-10

cast while a rank correlation is not, for the purposes of this subsection we infer both
overlap parameters only when the overlapped portion of the two layers has at least
0.01 cloud fraction (to have enough data points for an acceptable rank correlation cal-
culation) and when neither of the two layers has a cloud fraction greater than 0.99. We
create two types of plots: one showing the frequency distribution of rank correlations15

for different bins of combined true cloud fraction or alpha, and one showing the ensem-
ble mean ranks and fraction of negative mean ranks for those bins. The second type of
plot essentially summarizes two features, the mean and the cumulative frequency up
to zero rank correlation, found in the plots of the first type, but for more bins than were
convenient to display in those plots.20

The plots discussed above are shown in Figs. 6 and 7. Figure 6 suggests that
when the combined cloud fraction of the layers is 1 the probability distribution of rank
correlations is almost perfectly symmetric around zero and yields a near-zero mean
rank. This is an interesting result that defies an obvious explanation. Combined cloud
fractions of exactly 1 can occur only for overlap smaller than random, i.e., for some25

degree of minimum overlap. So it would be tempting to infer that so-called minimal
overlap, which implies a smaller overlapped fraction, tends to be associated with zero
mean rank correlation, but with a large amount of noise of either signed rank due to the
small overlapped sample size.
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However, there are significant and hitherto undiscussed interpretation issues that
may be appropriate to raise here. Up until this point we have been treating alpha and
rank correlation on somewhat of an equal footing. In fact, however, they are quite dif-
ferent – rank correlation is a fairly robust statistical property based on a typically large
number of rank pairs in the overlapped portion of the two layers. Alpha, by contrast, for5

a particular layer pair is based on only the two layer cloud fractions, and is not a statis-
tically robust quantity unless averaged over an ensemble of many segments or unless
the single segment in which it is evaluated is large compared to the horizontal length
scale lh over which individual clouds in each layer become statistically uncorrelated.
In other words, while single segment α(z1,z2) values of 1, 0 and <0 do have specific10

meanings for the segment in terms of cloud overlap (maximum, random and some de-
gree of minimum overlap) they imply little about the respective large-scale statistical
overlap of the two cloud layers over a large number of segments, unless the segment
is large enough to contain many dynamically independent cloud samples. This is pre-
sumably why the standard deviations of alpha in Fig. 1 are so much larger and more15

variable than the respective rank correlation values of Fig. 2.
Now, let us apply this thinking to the example of 100% combined cloud fraction being

discussed above. Such a case implies α(z1,z2)<0 (some degree of minimal overlap),
however, two completely uncorrelated cloud layers (in the large-scale sense) can fre-
quently produce cases of 100% combined cloud cover in segments that are not large20

compared to lh. In fact, the greater the individual layer cloud fractions, the greater the
likelihood of this. Thus the 100% combined cloud fraction bin will be a “degenerate bin”
that mixes many segments of large-scale uncorrelated layers with perhaps occasional
segments of large-scale minimally overlapped layers. If these uncorrelated cases dom-
inate, as they appear to, then it is not surprising that the condensate rank correlations25

within the bin are near zero in the mean. In this case, “minimal overlap” is likely to be
a false designation, since the alphas are all single segment values.
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Returning to Fig. 6, a progressive shift to fewer negative and greater mean rank
correlations occurs when the combined cloud fractions become smaller, i.e., when the
overlap becomes closer to maximum and the individual cloud fractions are also small.
One possible explanation is a transition from large scale cloudiness (with large cloud
fractions in either or both layers, yielding a large combined fraction, but from layers that5

can be quite unrelated) to convective clouds (typically small cloud fractions, but a large
vertical extent). Note that the 0.9–0.99 combined cloud fraction bin is quite distinct from
the overcast case in terms of the rank correlations it contains. Within this bin, random
cloud fraction overlap is possible, and positive ranks occur about 62% of the time. By
the time the combined cloud fraction is between 0.01 and 0.1 about 80% of the rank10

correlations are positive.
Figure 7 is consistent with the above picture, since as it was explained earlier, the

combined cloud fraction and alpha are not independent. For negative alpha the dis-
tribution of rank correlations is again almost perfectly symmetric around zero, and re-
sults in an almost exact zero mean rank correlation. As cloud fraction overlap tran-15

sitions from random to maximum the distributions become progressively more nega-
tively skewed and produce higher mean ranks until exact maximum overlap (alpha=1)
is reached. For that bin the number of negative rank correlations goes up again and
the value of the mean goes down, making it very distinct from the 0.9–0.99 alpha bin
(near-maximum overlap) which contains the largest mean rank, larger even than any20

mean rank appearing in Fig. 6. Bear in mind that Eq. (1) indicates that the alpha=1
bin does not necessarily contain only small combined cloud fractions, so it should not
be associated with any particular true combined cloud fraction bin in Fig. 6. A large
value of alpha simply suggests that the probability of a small combined cloud fraction
is statistically high.25
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4 Discussion of modeling implications

We have presented an analysis of cloud overlap behavior at a mid-latitude observa-
tional facility based on retrievals of cloud condensate from a millimeter cloud radar as-
sisted by a suite of other ground instruments. The temporal (horizontal in an eulerian
sense) and vertical resolution of the data, at 10 s and 45 m, respectively, are the high-5

est ever used to study this problem. The two facets of overlap that were investigated
were cloud fraction overlap (previously examined at the same site with coarser resolu-
tion datasets by Mace and Benson-Troth, 2002 and Naud et al., 2008) and the overlap
of horizontal distributions of condendsate, which has never been previously examined
with a dataset of this type. Besides the cloud fraction overlap parameter alpha and the10

rank correlation coefficient, the degree of proximity to the random and maximum over-
lap assumptions was also expressed in terms of decorrelation lengths, a convenient
scalar parameter that emerges under the approximation of overlap parameters decay-
ing exponentially with separation distance. Our findings regarding cloud fraction over-
lap, whether expressed in terms of alpha or its decorrelation length, reaffirm previous15

results with respect to seasonal variations and dependence on domain size, namely
that overlap tends to be more maximum for summer months and larger domains. The
same dependence is found for rank correlation, albeit significantly weaker, a behaviour
that was not previously known. We sought to gain further insight into overlap parameter
dependencies by examining differences in mean values for fixed separation distances20

within different layers of the atmospheric column, and by searching for possible sys-
tematic relationships between alpha and rank correlation. These efforts revealed that
for the same separation distance the overlap parameters are significantly different at
the various atmospheric layers, and that random cloud fraction overlap tendencies are
generally in sync with more random distributions of relative condensate strength.25

The question that naturally arises is whether any of the above has practical implica-
tions. If one wants to create 2-D X-Z distributions of condensate (a second horizontal
dimension is irrelevant for fields with no predefined spatial coherence) starting from
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profiles of cloud fraction and the mean and variance of cloud condensate, overlap
rules must be established. Our paper contains essential information about these over-
lap rules. Obviously, an extension to a global dataset is desirable, and the combined
CloudSat/CALIPSO (Stephens et al., 2002) dataset may be of significant help in this
regard. Also, a measure of whether overlap has been successfully and realistically5

implemented is necessary. A straightforward avenue of future research is to adopt the
inverse exponential model and express overlap in terms of decorrelation lengths. Our
dataset has shown that negative values for the overlap parameters are too frequent
for the exponential framework to be consistently credible, but whether it still works
sufficiently well with all negative values set to zero remains a legitimate subject of fur-10

ther investigation. Then there is the question what value of decorrelation length to use.
Should the median of individual decorrelation lengths (derived from individual data seg-
ments) be used as in Barker (2008b)? Apply also a modified definition that yields an
“effective” decorrelation length where the additional constraint of matching segment-
level total cloud fractions is imposed (Barker 2008b)? Or use the decorrelation length15

as derived in this work, namely from fits to ensemble-averaged profiles of alpha and
rank correlation?

A research path may be available to help address these questions (e.g., see Barker
2008a, b). It essentially entails using the profiles of cloud fraction and the first two
moments of condensate for each data segment, assuming a probability distribution20

function for the condensate, and reconstructing the cloud fields using either a single
decorrelation length from average overlap parameter profiles or individual decorrelation
lengths derived at the segment level, with a cloud generator of the type introduced by
Räisänen et al. (2004). The appropriateness of the inverse-exponential model and of
the proper decorrelation lengths can be tested by comparing: (a) cloud statistics (total25

cloud fraction or cumulative profiles of cloud fraction exposed to space and moments
of water path) between the original and reconstructed cloud fields and (b) radiation flux
and heating rates corresponding to the original and reconstructed cloud fields. Ra-
diative comparisons of the latter type will be facilitated in the near future by the recent
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release of the Radiatively Important Properties Best Estimate (RIPBE) evaluation prod-
uct (MacFarlane, personal communication, 2010) for the SGP ACRF site. RIPBE relies
for its cloud specification on the same MICROBASE dataset we use for our overlap
analysis (albeit at a lower 1 min temporal resolution), while also including all other at-
mospheric (temperature and water vapor profiles, aerosol loading, etc.) and surface5

(spectral albedo) variables that are required for full broadband radiative transfer calcu-
lations. Such a dual evaluation is in our future plans.
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Fig. 1. Profiles of seasonal ensemble means (left panels) and standard deviations (right pan-
els) of the overlap parameter alpha as a function of separation distance calculated from the
7-year Microbase dataset. Top panels are for the 150 km segment size and all four seasons:
December-January-February (DJF, winter), March-April-May (MAM, spring), June-July-August
(JJA, summer), September-October-November (SON, fall). Bottom panels are for different seg-
ment sizes for JJA.
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Fig. 2. As in Fig. 1, but for rank correlations.
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Fig. 3. The seasonal cycle of Lα (top three curves) and Lr (bottom three curves) decorrelation
lengths from ensemble-averaged profiles of alpha and rank correlation like those shown in
Figs. 1 and 2, but on a monthly instead of tri-monthly scale. The Lr curves are ordered in terms
of segment size in the same manner as the Lα curves.
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Fig. 4. Histograms of Lα and Lr derived from individual 150 km segments. Due to the exis-
tence of a large fraction of Lα values greater than 10 km (indicative of near-maximum overlap
conditions), both histograms were renormalized with such values excluded.
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Fig. 5. Alphas (top) and rank correlations (bottom) for the 150 km segment size and separation
distances of 1 and 2 km when ensemble-averaged separately within four 3 km thick atmospheric
layers. 0–3 km corresponds to the atmospheric layer closest to the surface.
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Fig. 6. (Top) histograms of rank correlations for different bins of true combined cloud fraction
calculated from layer pairs taken at every possible separation distance within 150 km segment
sizes; (bottom) ensemble-averaged rank correlations and fraction of negative rank correlations
within true combined cloud fraction bins from the same dataset used for the top panel. The
value below each pair of bars in the lower panel is the left edge of the bin. For example 0.1
refers to the interval [0.1,0.2), and the last bin is for a combined cloud fraction exactly equal to
one.
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Fig. 7. As in Fig. 6, but for bins of overlap parameter alpha.
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